

Training School Recyclability of Packaging Products Dr.-Ing. Hans-Joachim Putz, Dipl.-Ing. Saskia Runte Ecopaperloop Ljubljana, January 23rd, 2014

Content

- Packaging Recyclability Method
- Typical Results

24.01.2014

Dipl.-Ing. Saskia Runte Dr.-Ing. Hans-Joachim Putz

EcoPaperLoop PACKAGING Recyclability Method

Typical Packaging Products

Non-paper components e.g. "window foils" e.g. composite materials

<u>Glued Parts</u> e.g. Hotmelts or adhesive stripes

4

→ A Problem for Recovered Paper Processing?

24.01.2014

For good recyclability, products have to be:

Repulpable – important for all types of paper products

Adhesives have to be removable – important for all types of paper products and additionally

Deinkable – important for all graphic paper grades

→ Test Methods: Simulated Stock Preparation

Packaging Recyclability Method AIM

Method for the Recyclability Evaluation of Packaging Products

- High amount of sample material
- Disintegration step with practical relevance
- Objective evaluation of non-paper components
- Objective evaluation of flake content, sticky potential and sticky size distribution
- Evaluation of fibre yield

24.01.2014

Dipl.-Ing. Saskia Runte Dr.-Ing. Hans-Joachim Putz

Recyclability Test for Packaging Products (5th Draft)

Major Equipment

LC Disintegration

Coarse Screening

Flake Content &

Sticky Evaluation

8

24.01.2014

Adherend Ratio

- If a packaging product has to be divided, use the adherend ratio to maintain the correct ratio between adherend and non adherend material
- Calculation of the Adherend Ratio:

$$X_{Adherend} = \frac{m_{Adherend}}{m_{PackagingSample}} *100[\%]$$

24.01.2014

Dipl.-Ing. Saskia Runte Dr.-Ing. Hans-Joachim Putz

Pulping

- 480 g oven-dry sample material
- 4 % stock consistency \rightarrow water amount has to be calculated regarding dry content
- 40°C water temperature
- 5 min disintegration time

24.01.2014

Dipl.-Ing. Saskia Runte Dr.-Ing. Hans-Joachim Putz

near to industrial standard

24.01.2014

Dipl.-Ing. Saskia Runte Dr.-Ing. Hans-Joachim Putz

13

- 1. Outlet-valve is closed
- 2. Start the stirrer with 200 rpm
- 3. Fill in the disintegrated material (for 1st screening)
- 4. Smooth rotating for 3 s
- 5. Open the outlet valve and drain the device completly
- \rightarrow free fibres are removed without high shear forces

24.01.2014

- 5. Close the outlet valve again
- 6. Fill in 12 I tap water (for 2nd screening)
- 7. Smooth rotating for 3 s
- 8. Open the outlet valve and drain the device completly

24.01.2014

- 9. Free fibres attached to the screening plate or surface of device are sprayed out using approx. 2 I tap water
- 10. Transfer the reject on the screening plate to a weighted box

UROPEAN UNIC

Dipl.-Ing. Saskia Runte Dr.-Ing. Hans-Joachim Putz

Determination of Flake Content

24.01.2014

Determination of Flake Content (I)

24.01.2014

EUROPEAN UNION

EUROPEAN REGIONAL

DEVELOPMENT FUND

Dipl.-Ing. Saskia Runte Dr.-Ing. Hans-Joachim Putz

Determination of Flake Content (II)

Start the device with 0.1 bar water _____ pressure at a water flow of 3.33 l/min

Fill in the sample gently within 25 s

→ Fill in the leftover within the next 5 s

18

24.01.2014

Determination of Flake Content (III)

Stop the water flow and screening process after 5 min

Remove screening plate and wash the flakes into beaker

Drain the flakes over a filter

19

24.01.2014

Determination of Flake Content (IV)

24.01.2014

Dipl.-Ing. Saskia Runte Dr.-Ing. Hans-Joachim Putz

Macrosticky Test

24.01.2014

Dipl.-Ing. Saskia Runte Dr.-Ing. Hans-Joachim Putz

Macrosticky Test (I)

4 x 10 g oven dry sample material are screened over a 100 μm slotted plate (10 l/min, 5 min, 480 double-pass) Fill in the sample directly

24.01.2014

Macrosticky Test (II)

The reject is washed into a beaker and transferred to a paper filter The filter is dryed, the sticky material is attached (Silicone paper as cover)

The filter is dyed (Silicone paper as cover)

24.01.2014

Dipl.-Ing. Saskia Runte Dr.-Ing. Hans-Joachim Putz

Macrosticky Test (III)

Sticky particles are contrasted by using alumina powder

Contrasting with alumina powder

Drying, 92 °C, 10 min

24.01.2014

Macrosticky Test (IV)

Visual inspection to remove/mark other white material (e.g. plastics) Image analysis with DOMAS system to get macrosticky area

24.01.2014

Dipl.-Ing. Saskia Runte Dr.-Ing. Hans-Joachim Putz

Further steps

Yield

• The yield describes the usable solid stock material which passes the coarse screening step

Yield $[\%] = \frac{Packaging Product used [g b.d.] - Coarse Reject [g b.d.]}{Packaging Product used [g b.d.]} * 100 \%$

Ash Content

• The ash content describes the inorganic content after incineration (525 °C) of the solid stock material which passes the coarse screening step. By using the ash content a fibre yield could be calculated

Fibre Yield [%] = $\frac{(100 \% - Ash Content [\%]) * Yield [\%]}{100 \%}$

Handsheets

 Handsheets of the accept from sticky evaluation are prepared for a visual inspection of the optical properties of the stock

24.01.2014

Samples

Corrugated Board

Liquid Packaging

28

24.01.2014

Comparison of different products

Comparison of different products

24.01.2014

EUROPEAN UNION

EUROPEAN REGIONAL

DEVELOPMENT FUND

Dipl.-Ing. Saskia Runte Dr.-Ing. Hans-Joachim Putz

Comparison of different products

Typical Packaging Products Possible Results for Sticky Area

Example of a Recyling Friendly Packaging Material

24.01.2014

Dipl.-Ing. Saskia Runte Dr.-Ing. Hans-Joachim Putz

Thank You!

For further information contact

Paper Technology and Mechanical Process Engineering (PMV)

Technische Universität Darmstadt Alexanderstraße 8, 64283 Darmstadt, Germany

Dipl.-Ing. Saskia Runte runte@papier.tu-darmstadt.de

Dr.-Ing. Hans-Joachim Putz putz@papier.tu-darmstadt.de

24.01.2014

Dipl.-Ing. Saskia Runte Dr.-Ing. Hans-Joachim Putz

